

ELIZADE UNIVERSITY ILARA-MOKIN ONDO STATE

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

2nd SEMESTER EXAMINATION

2020 / 2021 ACADEMIC SESSION

COURSE CODE: CSC 420

COURSE TITLE: Theory of Automata and Computing

COURSE LEADER: Dr. K. Agbele

DURATION: 2 Hours

HOD's SIGNATURE

Aghabelle

INSTRUCTION:

Candidates should answer any FOUR (4) Questions.

Students are warned that possession of any unauthorized materials in an examination is a serious assessment offence

Students are permitted to use ONLY a scientific calculator.

- 1(a) What is an automaton? List and explain the types of Automaton
- (b) Explain the following components of a Finite Machine (i) Input (ii) Return (iii) State (iv) Start State (v) Accepting State (vi) Rejecting State (viii) Dead State (viii) Transition
- (c) When is a string accepted by a Non-Finite State Automaton (NFA)?
- (d) List five applications of Finite Machine
- (e) Design a DFA over [a,b] accepting {baa, ab, abb}

(15 marks)

- 2. (a) Explain the following terms with examples: (i) Alphabet (ii) Strings (iii) concatenation (iv) reverse of a string (v) length of a string (vi) Empty string (vii) Derivation of sentence (viii) Kleen Closure (ix) Prefix of a string (x) Positive Closure
- (c) Convert the transition table below to DFA

		ь
{1, 3}	{1, 3}	{2}
{2}	{2, 3}	{3}
{2, 3}	{1, 2, 3}	{3}
{3}	{1, 3}	Ф
$\{1, 2, 3\}$	$\{1, 2, 3\}$	{2, 3}

- (d) What is an identifier?.
- (e) Explain transition graph or system with the aid of a diagram. (15 marks)
- 3. (a) Why is theory of Computation important? Hence explain the 3 interacting components.
 - (b) If $\Sigma = \{a, b, c\}$, then find the following (i) Σ^1 (ii) Σ^2 (iii) Σ^3 (iv) Σ^4 (v) Σ^0
 - (c) Explain how a DFA process strings?
 - (d) What is Language of a DFA?
 - (e) Explain the theory of Backus-Naur Form (BNF) (15 marks)

- **4**. (a) Construct a DFA that accept the language L = $\{010, 1\}$ ($\Sigma = \{0, 1\}$)
- (b) Construct a DFA over alphabets {0, 1} that accept all strings that end in 101.

Hint: The DFA must remember the last 3 bits of the string it is reading.

- (c) Build an automaton that accepts all and only those strings that contain 101
- (d) Consider the following grammar:

$$s \longrightarrow SA/A$$

$$A \longrightarrow aAb/\lambda$$

Show the left-most-derivation, rightmost, and derivation tree for the string

(e) Design a DFA accepting all string over $\Sigma = \{0,1\}$ ending with 3 consecutives 0's.

(15 marks)

- 5. (a) Construct a DFA, that accept all the string over $\Sigma = \{a, b\}$ that do not end with ba.
- (b) Explain what the following denotes (i) a* (ii) (a/b)* (iii) a/a*b (iv) (a/b) (a/b) (v) a/b
- (b) What are regular expressions?
- (d) Given a Grammar G = (V_N, \sum, P, S) , where

V_N = (<sentence>, <noun>, <verb>, <adverb>)

P = (Babalola, Akinwumi, drive, sang, well)

S = <sentence>

Highlight the production rules to the above grammar G.

(e) What is acceptability of a string by finite automata? (15 marks)